4

20.2 CREDIT DERIVATIVES AND OPTIONS ON DEBT INSTRUMENTS

A significant weakness of the equilibrium class of models is that they sometimes fail to describe
the term structure of interest rates observed in the market. Traders find this shortcoming to be frus-
trating. Thus, a second class of models has won a much wider acceptance. These models start with
the assertion that the current term structure of interest rates contains no arbitrage opportunities.
These models are known as no-arbitrage models. It is important to note that as the term structure of
interest rates changes over time, the no-arbitrage model parameters must be reestimated accordingly.

Ho and Lee (1986, 1990) developed the first no-arbitrage model. Hull and White (1990) pre-
sent a very important no-arbitrage model that extended the Vasicek (1977) equilibrium model
while maintaining relative ease of use. The no-arbitrage model that is probably used the most by
market participants to price interest rate derivatives is the Heath-Jarrow—Morton (HIM) model,
introduced in 1992. It can be shown that most other no-arbitrage models are special cases of the
HIM model. An important distinction of the HIM model is that this approach is based on the
evolution of forward interest rates (as opposed to spot interest rates). The HIM model allows for
wide flexibility. Fortunately, software such as FinancialCAD is available to those wishing to use
the no-arbitrage approach to value interest rate derivatives.

20.2.5 Options on Swaps

While trading volume in all derivative markets has grown dramatically in recent years,
perhaps one of the most explosive growth areas has been in the market for options on swaps. Much
of the growth is probably attributable to the increased recognition that these instruments provide
considerable risk-shifting capability. In addition, these instruments, while sophisticated and
apparently rather complex, are relatively simple.

An option to enter an interest rate swap at some later date is called a swaption.!” That is, a
swaption is based on a forward-start interest rate swap. For example, a six-month into a three-year
swaption is an option to enter into a three-year interest rate swap six months from now. One key to
understanding swaptions is that the right to enter the swap can be viewed in two ways:

a. Call swaptions. These swaptions are also called payer swaptions. The holder of a payer
swaption has the right, but not the obligation, to enter the swap as the fixed rate payer. Here, hold-
ers of the swaption are looking to protect themselves against subsequent increases in the fixed rate.
A likely candidate to purchase this type of swap is a firm that will be borrowing at a floating rate
at some future date but wants to swap to a fixed rate. A call swaption is similar to a call option on
an interest rate or a put on a debt instrument.

b. Put swaptions. These swaptions are also called receiver swaptions. The holder of a
receiver swaption has the right, but not the obligation, to enter the swap as the fixed-rate receiver.
Here, holders of the swaption want to protect themselves against subsequent decreases in the fixed
rate. A firm would purchase this type of swaption if it currently holds a portfolio of floating-rate
securities but is thinking about swapping to receive a fixed rate. A put swaption is similar to a put
on an interest rate or a call on a debt instrument.

As with any option, the purchaser of a swaption must pay a premium to receive the rights con-
ferred by the swaption. The swaption premium is expressed as basis points per dollar of notional
principal. Various factors influence the value of a swaption. First, note that a swaption can have
American-style or European-style exercise. The time to expiration of the swaption refers to
the time from now until the time the swap can be entered. The fixed rate on the swaption is called
the strike price. The underlying rate is the fair fixed rate on a forward-start interest rate swap. The
volatility of this fair fixed rate is also required.
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20.2.5.1 European Swaption Valuation
Because a swap can be viewed as a collection of forward contracts, a European option on a swap
can be valued by Black’s (1976) version of the BSOPM presented in Chapter 18.

A swaption has a strike rate K, that is the fixed rate that will be swapped against the floating
rate if the option is exercised. In a call swaption, or payer swaption, the buyer has the right to
become the fixed-rate payer. The pricing model is

call swaption = (N X B)[F.N(d,) - K ,N(d,)] (20.4)

Tn Equation (20.4), N represents the notional principal, and B represents the present value of a
security that pays 1/ at all i payment dates of the swap. The underlying asset of the call is a T-year
forward-start swap where payments are made every nth interval. Thus, if b; represents the present
value of one dollar received at time i, we write

l nT
B=-%5(0,i :
. Z (0,1 (20.5)

Also, in Equation (20.04), F, represents today’s fair fixed rate on a forward swap, and:

In(F/K Y+ (c*I2)T
d — r X
. e (20.6)

_ 2
_InCE/K) =@ DT _ 6T

d
’ oT 20.7)

In a put swaption, or receiver swaption, the buyer has the right to receive the fixed rate. Using the
notation of Equation (20.4), the value of a put swaption is given by:

put swaption = (N x B)[K N(~d,) - F,N(~d,)] (20.8)

20.2.5.2 Pricing a Call Swaption: Example

Recall the example of a forward swap from Chapter 13 (Section 13.1.4). Assume that in that
example, the forward swap will begin in 47 days. The notional principal is $50 million. Assume a
360-day year. If the forward swap is executed today, both parties, the fixed-rate payer and the
receive-fixed party, are obligated to the terms of the forward swap. That is, in any forward con-
tract, including a forward swap, both parties have the right and the obligation to enter into the
swap. An alternative for the fixed-rate payer would be to purchase a payer swaption, in which case
the fixed-rate payer would have the right, but not the obligation, to enter the swap.

To begin the process of valuing a payer swaption, recall the Eurodollar futures settlement
prices from Table 10.2. For example, on July 28, 1999, the September Eurodollar futures contract
settled at 94.555, implying a borrowing rate of 5.445% from the expiration of the September con-
tract to the expiration of the December contract, a period assumed here to be 90 days. Thus, the
first swap payment would occur in 137 days. The value of b, is given by

bl — e-r().()5445(l37/365) — 0979770

The other elements of b are computed in accordance with Table 20.1.
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TABLE 20.1 Computing the Value of b for a Payer Swaption from Price Data
Observed on July 28, 1999

Days Until
Settle First Swap Unannualized

Month Yield Payment' Rate? b

Sept. 1999 0.05445 137 0.020437397 0.979770
Dec. 1999 0.0581 228 0.036292603 0.964358
Mar. 2000 0.05815 320 0.050980822 0.950297
June 2000 0.0605 412 0.068290411 0.933989
Sept. 2000 0.06235 503 0.085923425 0.917664
Dec. 2000 0.06465 593 0.10503411 0.900294
Mar. 2001 0.0645 685 0.121047945 0.885991
June 2001 0.0651 777 0.13858274 0.870591

! Days between July 28, 1999 and the twelfth day of the following contract month. For example, there
are 137 days between July 28, 1999 and December 12, 1999. There are 777 days between July 28, 1999
and September 12, 2001.

% Settle yield x (days until first swap payment/365).

Using these values for b;, and noting that n=4 and T=2, the value for B as stated in equation
(20.5) is:

B= %(0.979770 +0.964358 + 0.950297 + 0.933989
+0.917664 + 0.900294 + 0.885991 + 0.870591) = 1.85073

Suppose the strike price is set equal to the fair fixed rate on the forward swap, 6.09%. The time to
maturity of the swaption equals the time when the swap would start (i.., 47 days hence or 47/360
year). The final, and important input, is the volatility of the swap rate. Assume, for this example,
that it is 20% per year, or 0.20. The values for d, and d, are calculated as follows!3:

4 = In(0.0609/0.0609) +(0.20%/2)47/360
: 0.20,/47/360

dy =d, — 0T =0.036132 - 0.20,/47/360 = -0.036132

=0.036132

From the cumulative normal distribution, N(d)=N(0.036132)=0.514417 and N(d,)=
N(-0.036132)=0.485588. Combining this information yields a call swaption value of

call swaption = (N x B)[F.N(d,) - K. N(dy)]
= (50,000,000 x 1.85073)[0.0609 x 0.514417 — 0.0609 x 0.485588]
=$162,465, or $0.0032493 per dollar of notional principal
(i.e., 0.32493 basis point)
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This is an example of how to price a European swaption. In practice, swaptions can be
American or European, cr an exotic combination of the two, which is known as a Bermuda option.
For example, consider a swaption with a maturity of four years. It may be European during the first
year and American thereafter. To value an American swaption or a Bermudan swaption, it is
necessary to use lattice techniques that make normality assumptions (see Jarrow and Turnbull,
2000, Chapter 15) or a lattice technique that approximates the Heath~Jarrow—Morton model (the
HJM model does not make normality or lognormality assumptions.) For more details see, Jarrow
(1995) or Buetow and Fabozzi (2001). The next section discusses exotic options of other types.

20.3 Exomic OPTIONS

From about the late 1980s, options have evolved that allow hedgers to shift risks in ways that ordi-
nary, traded options cannot accomplish. These options have become known as exotic options.

Exotic options are generally divided into two broad groups. One group is widely known as
path-dependent options and the other group is often called path-independent, or free-range,
options. We begin with a discussion of free-range options.'?

20.3.1 Free-Range Exotic Options
Recall from Chapter 18 that the BSOPM formulas for calls and puts are

C = SN(d,)— Ke " N(d,) (18.3)

and,

P=Ke '"N(~d,) - SN(-d;) (18.8)

where we use the following definitions:

S=price of the underlying asset
K = strike price of the call option
r =risk-free interest rate
T = time to expiration
N(d) = cumulative standard normal distribution function

gy DSIK)+r c212)T
oNT
dy =d; —oNT
o =the standard deviation of the underlying asset’s returns

In(S/K) = the natural logarithm of S/K
¢”T =the exponential function of —r7.

20.3.1.1 European Digital Options

Digital options, also known as binary options, are important to financial engineers as building
blocks in the construction of more complex options. At expiration, a digital call option is worth $1
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if 7> K and zero otherwise. For binary puts, the expiration value is $1 if K> Sy and zero other-
wise. Thus, the payoff from digital call pat options is discontinuous at the strike price.2® Before
expiration, the values of digital options (Cgigi and Pyigirat) are given by:

Ciigia =€ N(dy) (20.9)

and

Pygia =€ N(=d,) (20.10)

If the payoff of the digital option is multiplied by the strike price, the digital option is known
as a strike-or-nothing (son) option. Thus, at expiration, a strike-or-nothing call option is worth $K
if S7> K and zero otherwise. For strike-or-nothing puts, the expiration value is $X if K>S, and
zero otherwise. As such, before expiration, the value of these options is:

C.

son

= Ke"TN(dzl) (20.11)

and

P

~rT
on = Ke™ N(=d,) (20.12)
Asset-o1-nothing (aon) options, a natural companion to strike-or-nothing options, are also
useful to financial engineers. The payoff at expiration for an asset-or-nothing call is $57if S7>K
and zero otherwise. For asset-or-nothing puts, the expiration value is $S; if K> S; and zero other-
wise. Before expiration, these options are valued as follows:

Coon = SN(d)) (20.13)
and
Fion =SN(-dy) (20.14)

Note that the formulas for asset-or-nothing and strike-or-nothing options are simply parts of
the BSOPM. Thus, one can see that the call option value given by the BSOPM represents a port-
folio comprising a loag position in an asset-or-nothing call option and a short position in a strike-
or-nothing call option. Also, a put option value given by the BSOPM represents a portfolio made
up of a long position in a strike-or-nothing put option and a short position in an asset-or-nothing
put option.

20.3.1.2 European Gap Options

Gap options also have a discontinuous payoff profile. However, unlike the payoff to the ordinary
digital option, the payoff to a gap option is not flat on both sides of the strike price. The payoff to
a gap call option is S7— G if S7> K and zero otherwise. Note that this is the same payoff as that of
an ordinary call option if G=K. Thus, to make a gap call option different from an ordinary call, G
must be greater than or less than K. Before expiration, the value of a gap option can be thought of
as the value of an ordinary call plus an adjustment for the difference between K and G. That is, for
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a gap call, we write:
Cpp = [SN(d, )— Ke” " N(d, )] +(K - G)e " N(d,) (20.15)

Equation (20.15) shows that the value of a gap call equals the value of a long position in an
asset-or-nothing call when G=0.

The payoff to a gap put option is G— S if K >S;and zero otherwise. Note that this is the same
payoff as that of an ordinary put option if G =K. Again, to make a gap put option different from an
ordinary put option, G must differ from K. Before expiration, the value of a gap put option can be
thought of as the value of an ordinary put plus an adjustment for the difference between G and K.
That is, a gap put is expressed thus:

P,= [Ke"TN(—dQ )~ SN(—d, )] +(G-K)e"N(~d,) (20.16)

Equation (20.16) shows that the value of a gap put equals the value of a short position in an
asset-or-nothing put when G = 0.

20.3.1.3 European Paylater Options

Paylater options provide a means to protect the holder of the option against a disastrous move
in the underlying asset—at zero initial cost. However, the premium of $L. is paid if the
option expires in the money, even if the option does not expire sufficiently in the money to pay
the premium. Thus, the payoff at expiration for a paylater call option is S;—K—-L, if S7>K and
zero otherwise. Note that a paylater call option will have a negative payoff if K<Syr<K+L..

Because a paylater call option can be viewed as a combination of an ordinary call option less
a nayment of $L_ times the value of a digital call option, one can solve for the premium at initia-
tion (i.e., at time 0) by stating

[C

paylater

lo =[SN(d)) - ke N(d,)] ~[Le " N(d,)], (20.17)
Because the value of a paylater call option is set to zero at time 0, the premium amount L_ is
- _ ~rT _ -rT
0=[SN(d)) - Ke™N(dy)] ~[L.e TNy,

) [SN(d) ~ Ke™ N(d, )]0
- [e " N4, )]0

{.

After time zero, say at arbitrary time ¢, the value of a paylater call option is

[C

paylater ]t

=[SNd,) - Ke""N(d,)] - [L.e " N(d,)], (20.18)
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Similarly, for puts,
0 =[Ke™ " N(~dy) ~ SN(~d, )]0 LN )

L [Ke™" N(-d,) - SN(~4, )]O
P e N-dy)],

and -

[P

paylater ]r

-7 - )

= [Ke N(-d,) = SN(=4, )]t h [Lpe "N(-d, )], (20.19)

Although the hoider of a paylater option does not have to pay for the option if it expires out of
the money, the premium the holder must pay if the option finishes in the money is significant. For
example, if §$ = K = 100, r=6%, T = 90 days, o = 30%, and there are no dividends, the BSOPM
yields a call option value of about $6.67. Equation (20.18) shows that a paylater call option pre-
mium is about $13.29. Thus, if S7= 100.01, the holder of the ordinary call option has lost $6.66
while the cost to a paylater holder is $13.28, about twice as much. In percencage terms, the differ-
ence is even higher for out-of-the-money options.

20.3.1.4 European Chooser Options

Chooser options are sometimes known as “as you like it” options or “options for the undecided”
(Rubinstein, 1991). This is because at purchase, the chooser option is neither a call option nor a
put option. The buyer of a chooser option has the right, at a prespecified time, to “choose” whether
the option finishes its life as an ordinary call option or as an ordinary put option. Chooser options
are a lower cost alternative to purchasing a straddle.?!

Pricing a chooser option is surprisingly straightforward. First, let the chooser option expire at
time 7, but the holder of the chooser must “choose” at time r The cxcicise price equals K. Of
course, the holder of the chooser will convert the option into a call if, at time t, a call with strike
equal K expiring at time 7T is more valuable than a put with the same strike and expiration date.
That is, the holder will chose “call” if

C, (S, T—1,K)> P,(S, T~ 1,K) (20.20)

By using a continuous time version of put—call parity, equation (20.20) can be written as follows:
C/S.T-1,K)> C(S.T-1,K)~ S, + Ke TV 2021

Therefore, from Equation (20.21), you can see that the holder of a chooser option will chose
call if, at time ¢, the stock price is greater than the discounted strike price.
At initiation, the payofts to a chooser option can be replicated by the following portfolio:

A long position in an ordinary call option with a strike price equal to K and a time to
maturity of T

—-r(I'-1)

A long position in an ordinary put with a strike price equal to Ke and a time to matu-

rity of ¢ (the choice date)
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20.3.1.5 Compound Options

A compound option is an option written on another option. There are four basic types of com-
pound option: a call on a call, a put on a cali, a call on a put, and a put on a put. A call option on a
call is a cacall. A caput is a call on a put.??

Many securities and contracts car be modeled as compound options. Eoth Black and Scholes
(1973) and Galai and Masulis (1976) point out that ordinary calls on 100 shares of stock are actu-
ally compound options. The owner of 2 call has an opiion on a firm’s stock, but stock represents a
call on the assets of a levered firm. When a firm’s debt matures, the firm will either repay the prin-
cipal due to the bondholders (if the firm’s value is sufficient to repay this amount), leaving the
residual amount for the stockholders, or default, in which case the bondholders take over the firm’s
assets and the stockholders get nothing (this will occur if the value of the firm’s assets is less than
the amount due to the bondholders). Thus, owning a call is a compound option on the underlying
firm’s assets.

Coupon-paying bonds and sinking fund bonds are compound options (Geske, 1977). For
example, the stockholders of a firm that has issued a coupon bond own a stream of compound
European options. At each coupon date, the firm has the option of defaulting or paying the bond-
holders off with the coupor in exchange for another European option that expires at the next
coupon payment date. The underlying assets of each option are the firm’s assets. When the stock-
holders pay the last coupon and principal, they then own the residual value of the firm’s assets.

“Split-fee options” exist in the mortgage-backed securities market. These, too, are actually
compound options in which the buyer initially buys the right (but not the ~bligation) to later buy
an option to subsequently make or take delivery of bonds that are collateralized with mortgages.

20.3.1.6 Options on the Minimum or Maximum of Two Unknown
Outzomes

Stulz (1982) introduced formulas for the pricing of options on the minimum or maxim'im of two
risky assets. These options are exotic because, unlike ordinary options, there are two different
underlying assets. 23

There are call options on the maximum of two stochastic values, put options on the minimum
of two stochastic values, call options on the minimum of two stochastic values, and put optiors on
the maximum of two stochastic values.

20.3.2 Path-Dependent Options

Unlike the free-range options discussed earlier, one group of options has a value that depends on
the path of the price of the underlying asset befor option expiration. These exotic options are
called path-dependent options.

20.3.2.1 European Barrier Options with One Barrier and No Dividends

Barrier options are now heavily traded in the over-the-counter markets. One appealing feature of
these options is that they are less expensive than ordinary options. This is because the payoff to a
barrier option depends on whether the price of the underlying asset reaches a critical level, known
as the barrier, before option expiration. Intuitively, then, barrier options. are less expensive than
ordinary options because there are fewer positive payoff opportunities for barrier options.?*
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Call and put barrier options can both be divided into two groups. These two groups are “out-
barrier” options (also known as knock-outs or outs) and “in-barrier” options (knock-ins or ins).
A knock-out option ceases to exist when the value of the underlying asset touches the barrier level.
By contrast, a knock-in option comes into existence when the underlying asset price reaches the
barrier level. The name of a barrier option also depends on the price path of the underlying asset.
Thus, an upward price path of the underlying asset leads to “up and in” and “up and out” barrier
options, while a downward price path of the underlying asset leads to “down and out” and “down
and in” barrier options. Thus, although there are eight basic categories of barrier options, we will
present only the cases involving call options.

Barrier options sometimes contain a rebate feature. Under the terms of the rebate, the holder
of an “out” option receives part of the premium paid for the option if the option is “knocked out.”
Similarly, the holder of an “in” option would receive a portion of the option premium if the option
expires without being “knocked in.”?3

Merton (1973) and Reiner and Rubinstein (1991) have developed formulas used to price bar-
rier options.?® An interesting feature of barrier options is that in the absence of a rebate provision
and given identical payoffs and barrier levels, the value of a European down-and-in barrier option
plus the value of a European down-and-out barrier option equals the value of a call option value
given by the BSOPM. That is,

CBSOPM = Cdown—oul + Cdown—in (2022)
The following pricing relationship also holds:
CBSOPM = Cup~0ut + Cup—in (2023)

To proceed, add the following definitions to those in Section 20.3.1:

H = barrier level

_ In(S/H)
W TT +(1+p)oNT

In(H%/SK)
=224 NT
e +(l+wo

_In(HIS)
== +(1+ p)oNT

_r-050"

0_2

Given these definitions, if the barrier level H is less than the strike price K the value of a down-
and-in call is given by:

C = SCHISY " N(y) - Ke™ T (HIS)** N(y — oT) (20.24)

down—in
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We can use Equations (20.22) and (20.24), to show that the value of a down-and-out call is
given by Cgsopm ~ Caown-in->

If the barrier level H is greater than the strike price K, the value of an up-and-in call is
given by

C,._..=SNw)—Ke TN(w—-0oT)

up—in
+ SCHISY DNz - Ny (20.25)
— Ke T (HISY**[N(z = 6T ) = N(y — oT)]

and the value of an up-and-out call is computed by using Equations (20.23) and (20.25). Note that
when the barrier level is less than or equal to the strike price, the value of an up-and-out call is zero
because this barrier option cannot expire with a positive intrinsic value. Consequently, when the
barrier level is less than or equal to the strike price, the value of an up-and-in call equals the value
of a Black—Scholes call.

20.3.2.2 Lookback Options

The payoff to a lookback option depends on the value of the extreme stock price during the life of
the option. Sometimes these options are called “no regrets” options. This is because, for example,
the holder of a lookback call can buy the underlying asset at its lowest price between option initi-
ation and option expiration.

There are several types of lookback option. A standard lookback call option yields proceeds
at exercise equal to the stock price at exercise less the minimum stock price observed during the
life of the option. These standard lookback options are sometimes known as “floating-strike”
options. By contrast, a fixed-strike lookback call option gives proceeds at exercise equal to the
difference between the highest stock price observed during the life of the option and the exercise
price. These options are also known as “extreme” lookback options.

Goldman, Sosin, and Gatto (1979) developed a formula for pricing floating-strike, or standard
lookback, options. For a floating-strike lookback call, their formula is

C =SN(g)-S,.e"N(g-oJT)

floating-strike

s -2r/c*
N | N(—g ML ) —¢"N(-g) (20.26)
2ri\ S (o]

min

where

In(S/S,..
g =

Y+ (r+0 2T

oT

Conze and Viswanathan (1991) developed formulas for extreme lookback options. For example,
in cases of strike prices less than or equal to the maximum price achieved by the underlying asset.
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their formula for call options is

Cixed-stiike = SN() = Spuxe " N(f = NT) +e77 (S, — K)

52 s -2r/o? )
+Se”" — —( N(f —lﬁ)w’TN(f) (20.27)
2)" \Smax )
where
- In(S/S,, ) +(r+0%/2)T

f T

While we have presented formulas only for European lookback call options, formulas exist
for European lookback put options (see, e.g., Haug, 1998). In addition, there are many variants of
lookback options. For example, “partial-time” lookback options exist. The unique feature of these
options is as follows. For a partial-time, floating-strike lookback option, the end of the lookback
period occurs before option expiration. For a partial-time fixed-strike lookback option, the begin-
ning of the lookback period starts a predetermined time after option initiation. Also, there are
Russian options, which are like an infinite-life lookback option. After initiation, the holder of a
Russian option can wait as long as desired before exercising the option. Of course, upon exercis-
ing during the finite lookback period, the option ceases to exist.

20.3.2.3 Average Options

Average price options are quite popular and are used in many different over-the-counter markets.
The payoff to average options, also known as “Asian” options, depends on the average price of the
underlying asset during the life of the options.

There are two basic types of average option, average price and average strike. At expiration,
an average price call option pays the maximum of zero or Savg—K. The payoff to an average price
put option is the maximum of zero or K —Savg- At expiration, an average strike call pays the
maximum of zero or S7—S,,,. Accordingly, the expiration payoff to an average strike put is the
maximum of zero or Save =St

Average price options are cheaper than ordinary call options. This is because volatility is
dampened when averaging the prices of the underlying asset. Generally, a simple arithmetic
average is used to calculate the average price. In this case, however, it is not possible to use a for-
mula to price these options. Thus, these options must be priced by means of analytical
approximations or with computer simulations.28

20.3.3 Shouts and Ladders

Shouts and ladders can best be described by means of a short example. Consider the case of an
option holder who has an in-the-money option that still has some time left to maturity. The option
holder would like to guarantee a profit on this position. For traded options, the option holder could
use a stop-loss order. However, for over-the-counter options, stop-loss orders may be unavailable.
Shout options provide a substitute. A shout option gives the option holder the right to capture the
intrinsic value portion of the option premium before expiration and keep the time value.

629



630

20 CURRENT TOPICS IN RISK MANAGEMENT

For example, suppose a three-month, one-shout call option exists on Intel Corporation. At the
time the option was purchased, S =K =$75. After one month, Intel stock stands at $100. The option
holder may “shout” and lock in the $25 intrinsic value. The option holder still holds a two-month
call option, but the strike price is adjusted to $100.

If a shout option has numerous shouting opportunities, it is known as a ladder.

20.4 SUMMARY

In this chapter, we present three currently important risk management topics: value at risk (VaR),
credit derivatives, and exotic options.

VaR is an attempt to condense into a single figure an estimate of the price risk possessed by a
portfolio of derivatives and other financial assets of a single firm. The price risk number obtained
from a VaR model summarizes risk exposure into a dollar ﬁgure that purportedly represents the
estimated maximum loss over an interval of time. As yet, there is no standard method to compute
VaR. However, several accepted methods for computing VaR have emerged. These methods are
the variance—covariance approach, the historical simulation method, and the Monte Carlo simula-
tion method. For any VaR calculation method, it is important for the risk manager to assess the
valuation impact of worst-case scenarios, such as the market crash of 1987.

The second major topic presented in this chapter is credit risk. Credit risk permeates market
economies. In its most basic form, credit risk is the charice that a bond issuer will not make
every coupon payment, that is, the chance that the bond issuer will default. Because default on a
contract can result in material losses, financial institutions look to protect themselves against
credit risk. There are many different types of credit derivative, and more are being invented each
year. However, the two most popular credit derivatives are total return swaps and credit swaps.

The third topic in this chapter is exotic options. From about the late 1980s, options have
evolved that allow hedgers to shift risks in ways that ordinary, traded options cannot accomplish.
These options have become known as exotic options. Exotic options are generally divided into two
broad groups. One group of exotic options is known as path-independent, or free-range options.
Options in this group include digitals, gaps, and paylater, chooser, and compound options. The
other group is widely known as path-dependent options. Exampies of path-dependent options
include barrier, lookback, and average options.
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